US ERA ARCHIVE DOCUMENT

EPA's Report to Congress on Black Carbon: Key Messages and Critical Next Steps

Erika Sasser
May 21, 2012
Presentation at the Black Carbon STAR Grant Kick-Off Workshop

EPA's Report to Congress on Black Carbon

- In October 2009, Congress requested that EPA conduct a comprehensive study on black carbon to evaluate domestic and international sources, and climate/health impacts
- EPA completed this report on March 30, 2012
- Available online at: www.epa.gov/blackcarbon

Report to Congress on Black Carbon

Department of the Interior, Environment, and Related Agencies Appropriations Act, 2010

March 2012

The Report:

- ➤ Defines black carbon (BC) and describes its role in climate change.
- ➤ Characterizes the full impacts of BC on climate, public health, and the environment based on recent scientific studies.
- ➤ Summarizes data on domestic and global BC emissions, ambient concentrations, deposition, and trends.
- ➤ Discusses currently available mitigation approaches and technologies for four main sectors:
 - Mobile Sources
 - Stationary Sources
 - Residential Cooking and Heating
 - Open Biomass Burning
- ➤ Considers the potential benefits of BC mitigation for climate, public health, and the environment.

Key Messages from the BC Report to Congress

- Targeted reductions in black carbon (BC) emissions can provide significant near-term climate benefits.
- The health and environmental co-benefits are very large.
 - Emissions and ambient concentrations of directly emitted PM_{2.5} are often highest in urban areas, where large numbers of people live.
 - Average public health benefits of reducing directly emitted PM_{2.5} in the U.S. are estimated to range from \$290,000 to \$1.2 million per ton PM_{2.5} in 2030.

Source: Reuters

Source: EPA

Annual Mean BC Concentrations (µg/m3) for 2005-2008

POTENTIAL BENEFITS = MITIGATION POTENTIAL +/- CONSTRAINING FACTORS

Goals

Climate

Radiative Forcing Temperature Ice/Snow Melt Precipitation

Health

Ambient Exposures Indoor Exposures

Environment

Surface Dimming Visibility

Emissions sources

Stationary Sources

Brick Kilns Coke Ovens Diesel Generators Utilities Flaring

Open Biomass Burning

Agricultural Burning Prescribed Burning Wildfire

Mobile Sources

On-Road Diesel
On-Road Gasoline
Construction Equip.
Agricultural Equip.
Locomotives
Marine

Residential Cooking and Heating

Cookstoves Woodstoves Hydronic Heaters

Mitigation options

Available Control Technologies

e.g. Diesel Particulate Filters Alternative Strategies to Reduce Emissions e.g. Efficiency Improvements, Substitution

Timing

Location

Atmospheric Transport

Co-Emitted Pollutants

Cost

Existing Regulatory Programs

Implementation Barriers

Uncertainty

6

Key Messages from the BC Report (cont.)

- Effective control technologies and approaches are available to reduce BC emissions from a number of key source categories.
- ➤U.S. BC emissions have been declining, and additional reductions are expected by 2030 due to controls on mobile diesel engines.
 - Controlling direct PM_{2.5} emissions from sources can be a highly effective air quality management strategy, with major public health benefits.
- ➤In other world regions, emissions have been increasing and growth in some sectors (e.g., transport) may continue.
- Therefore: BC reduction opportunities exist, but realizing additional reductions will require tailored approaches.

U.S. Mobile Sources

Emissions from U.S. Mobile Sources Are Projected to Decline by 86% by 2030 due to Existing Regulations

Who is Listening?

Climate and Clean Air Coalition to Reduce Short-Lived Climate Pollutants

- Announced by Secretary Clinton and Administrator Jackson February 16, 2012
- ➤ Goal is to accelerate reductions in BC, methane, and HFCs
- ➤ Administered by UNEP
- ➤ Participants: U.S., Canada, Sweden, Mexico, Ghana, Bangladesh, Colombia, Japan, Nigeria, the European Commission, Norway, World Bank
- ➤ On April 24, 2012, announced 5 major initiatives:
 - Diesel emissions reductions (black carbon)
 - Brick kilns (black carbon)
 - Landfills (methane)
 - Oil and Gas (methane)
 - HFC alternatives

Other International Efforts

Gothenburg Protocol

• In May 2012, the Convention on Long-Range Transboundary Air Pollution (LRTAP) adopted new PM requirements as part of revisions to the Gothenburg Protocol, including specific language on BC

Arctic Council

- Task Force on Short Lived Climate Forcers (2011) 3-0a TF SPM recommendations 2May11 final.pdf
- Arctic Monitoring and Assessment Program (AMAP): The Impact of Black Carbon in the Arctic (2011) (<u>www.amap.no</u>)
- Short-Lived Climate Forcers Project Steering Group (under the Arctic Contaminants Action Program (ACAP), see http://www.epa.gov/international/io/arctic.html)

The Impact of Black Carbon in the Arctic

(AMAP, 2011) (www.amap.no)

Figure 6-7. Contribution to Radiative Forcing of Carbonaceous Aerosol Emissions within Different Latitude Bands. (a) Absolute and (b) Normalized per unit emission atmospheric direct radiative forcing due to BC+OC and BC-snow/ice radiative forcing as a function of latitude band.

International Efforts (cont.)

International Maritime Organization (IMO)

- Considering whether to control BC emissions from ships (particularly in the Arctic)
- North American emission control area (ECA) for marine emissions (adopted March 2010) is expected to reduce emissions of NOx, PM2.5, and SOx, butdoes not cover shipping in the Arctic

Global Alliance for Clean Cookstoves

- Announced by Secretary Clinton September 2010
- Administered by UN Foundation
- Goal: 100 million clean and efficient stoves by 2020

	Key Policy-Relevant Research Need	BC STAR Grants
1.	Continued investigation of <u>basic microphysical and atmospheric</u> <u>processes</u> affecting BC and other aerosol species to support the development of improved estimates of radiative impacts, particularly indirect effects.	Asa-Awuku Kroll Pandis Riemer Schauer
2.	Improving global, regional, and domestic BC <u>emissions</u> <u>inventories</u> with more laboratory and field data on activity levels, operating conditions, and technological configurations, coupled with better estimation techniques for current and future emissions.	Bond Carmichael Edwards Pandis Schauer
3.	Focused investigations of the climate impacts of <u>brown carbon</u> (BrC).	Bond Carlton Kroll Schauer
4.	Research on the impact of aerosols in <u>snow- and ice-covered</u> <u>regions</u> such as the Arctic.	Doherty

	Key Policy-Relevant Research Need	BC STAR Grants
5.	Standardized <u>definitions</u> and improved <u>instrumentation and</u> <u>measurement techniques</u> for light-absorbing PM, coupled with <u>expanded observations</u> .	Doherty Edwards Kroll
6.	Continued investigation of the <u>differential toxicity</u> of PM components and mixtures and the shape and magnitude of the PM health impact function.	N/A
7.	More detailed analysis and comparison of the <u>costs and benefits</u> of <u>mitigating BC</u> from specific types of sources in specific locations.	Bond Carmichael Pandis
8.	Refinement of policy-driven <u>metrics</u> relevant for BC and other short-lived climate forcers.	Bond Carmichael
9.	Analysis of key <u>uncertainties</u> .	Bond Carmichael Riemer

What do we hope to learn?

- The full extent of BC climate impacts (and BrC too!)
- What to mitigate, and where
- How to represent BC and other aerosols more fully in models for both climate and air quality purposes
- How much uncertainty remains, and which uncertainties matter